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VELOCITY-PRESSURE INTEGRATED VERSUS PENALTY 
FINITE ELEMENT METHODS FOR HIGH-REYNOLDS- 

NUMBER FLOWS 

S.-W. KIM* AND RAND A. DECKER? 
Fluid Dynamics Branch, NASA-MSFCJED 42, Huntsville, Alabama 35812, U.S.A. 

SUMMARY 

Velocity-pressure integrated and consistent penalty finite element computations of high-Reynolds-number 
laminar flows are presented. In both methods the pressure has been interpolated using linear shape functions 
for a triangular element which is contained inside the biquadratic flow element. It has been shown previously 
that the pressure interpolation method, when used in conjunction with the velocity-pressure integrated 
method, yields accurate computational results for high-Reynolds-number flows. It is shown in this paper that 
use of the same pressure interpolation method in the consistent penalty finite element method yields 
computational results which are comparable to those of the velocity-pressure integrated method for both the 
velocity and the pressure fields. Accuracy of the two finite element methods has been demonstrated by 
comparing the computational results with available experimental data and/or fine grid finite difference 
computational results. Advantages and disadvantages of the two finite element methods are discussed on the 
basis of accuracy and convergence nature. Example problems considered include a lid-driven cavity flow of 
Reynolds number 10000, a laminar backward-facing step flow and a laminar flow through a nest of cylinders. 
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INTRODUCTION 

Various finite element methods for the Navier-Stokes equations have been proposed during the 
last decades. These finite element methods may be categorized into three classes based on the way 
pressure has been treated: velocity-pressure integrated mixed interpolation methods,' -3  penalty 
methods3 - and velocity-pressure segregated methods.6- * 

The velocity-pressure integrated mixed interpolation methods do not require any approxima- 
tion at the differential equation level, whereas simplified pressure and/or pressure correction 
equations are used in the velocity-pressure segregated methods, and the penalized conservation of 
mass equation is used in the penalty methods. Conceptually, the velocity-pressure integrated 
methods would satisfy the conservation of mass equation most rigorously. An eight-node velocity, 
four-node pressure flow element has been used most frequently in the early development stage of 
the finite element method for flows.' Unfortunately, this element yielded inaccurate pressure as the 
Reynolds number was increased.' A compilation of various flow elements which yielded improved 
pressure can be found in Reference 9, among many others. However, high-Reynolds-number flows 
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(i.e. cavity flow for a Reynolds number of 10000) have seldom been considered except in 
References 2 and 10. In References 2 and 4 a nine-node velocity, three-node pressure flow element 
was introduced; it was shown that this flow element, when used in the velocity-pressure integrated 
finite element method, yielded accurate computational results for high-Reynolds-number flows. 

The velocity-pressure segregated methods have been motivated by the success of the finite 
difference computational methods based on segregated formulation of the Navier-Stokes 
equations, such as the SIMPLE (semi-implicit method for pressure-linked equations) algorithm.' 
In the segregated methods significant computational efficiency can be achieved in computer 
storage and computational time compared with the other two classes of methods. 

In the penalty method the pressure variable is pre-eliminated from the Navier-Stokes equations 
by penalizing the conservation of mass equation. The conservation of mass constraint can be 
satisfied rigorously as the penalty number approaches infinity. The influence of the penalty 
number on the converged solution can be found in Reference 12, among many others. The 
consistent penalty method studied in this paper is the same as that of Reference 4 except that a new 
pressure interpolation method has been used. The improvements realized by introducing the new 
pressure interpolation polynomial into the consistent penalty method are also discussed in detail. 
It is shown that the penalty method and the velocity-pressure integrated method yield 
comparable computational results for both the velocity and the pressure fields in terms of 
accuracy and convergence rate. 

The example problems were solved using a frontal solver and the direct (Picard) iteration 
method.', l 3  Inclusion of the Newton-Raphson method into the present finite element code14 has 
not been considered, since computation of turbulent flows usually requires the most strongly 
convergent solution technique, which may require severe under-relaxation to obtain convergent 
solutions.' - l 7  

FINITE ELEMENT EQUATIONS 

A finite element system of equations for two-dimensional, laminar, steady, incompressible flows is 
described below. The method is based on the standard Galerkin finite element method.' In the 
following discussions consistent notations are used throughout, and repeated indices imply 
summation over the indices unless otherwise specified. 

The Navier-Stokes equations are given as 

where 0 is the open bounded domain, the subscripts i and j denote co-ordinate directions, p is the 
density of the fluid, ui is the velocity component in the ith co-ordinate direction, pis the pressure, p 
is the molecular viscosity of the fluid, bi is the body force in the ith co-ordinate direction and hi j  is 
the Kronecker delta such that hi, = 1 for i = j and hij = 0 for i # j .  The boundary conditions used are 
given as 

u = uo(x) for x E dR,, 
T i = ~ i j n j  for x ~ d C l ~ ,  (3) 
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where x =(x, y), an, is part of the boundary on which a Dirichlet boundary condition is specified, 
aR, is the rest of the boundary on which natural boundary conditions are specified, Ti is the 
surface traction and zij is the stress tensor given as zij = p(aui/axj + auj/dx,) -phi> 

In the penalty method the conservation of mass equation is expressed as 

where 2 is the penalty number. 
The finite element system of equations for the penalty method is given below. Detailed 

derivation of the finite element system of equations can be found in References 1,2 and 10, among 
many others. The system of equations for an element (Q,) is given in matrix form as 

where 

ui is a column vector of nodal values of the velocity component ui, p is a column vector of nodal 
pressure, $ is a column vector of interpolating polynomials for velocity, + is a column vector of 
interpolating polynomials for pressure, { b.c.} is a column vector contributed by the specified flux 
boundary condition and the subscripts i and j denote the spatial dimensions. Equations (7H12) 
have been integrated using the Gauss numerical quadrature method with three Gauss points in 
each co-ordinate direction. 

For the velocity-pressure integrated case the element system of equations given as equations ( 5 )  
and (6), with the right-hand side of equation (6) replaced by a null column vector, have been 
assembled to obtain the global system of equations. In the penalty finite element method equation 
(6) has been inverted to obtain a column vector of the nodal pressure and the result has been 
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substituted into equation (5) to obtain 

The flow element is described below. The velocities were interpolated using the biquadratic shape 
functions and the pressure was interpolated using the linear shape functions defined on a 
triangular element which is contained inside the quadratic element; see Figure 1. The three 
pressure nodes are located at the three Gauss points of the three-point Gauss quadrature rule for 
quadrilateral elements.I8 The co-ordinates of the pressure nodes on the computational element 
are given as2 

(0, 4 2 / 4 3 ]  for n = 1, i (1142,  - 1 / 4 6 )  for n= 3, 
c,,= (1142,  - 1 / 4 6 )  for n = 2 ,  (14) 

where 5,=(5,, q,,) and n denotes the pressure node numbers. The shape functions for each of the 
nodes are given as 

The other pressure interpolation polynomials studied are given as4 

i 

Figure 1. A nine-node velocity, three-node pressure flow element: x , velocity node; 0, pressure node 
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and 

V={l , t , r I .  (1 7) 
The three pressure interpolation methods given as equations (1 5H17) belong to the same 

approximation space when rectangular elements are used, but only equations (15) and (1 7) belong 
to the same approximation space when non-rectangular elements are used. Thus any difference 
between the computational results obtained by using the pressure interpolation polynomials 
which belong to the same approximation space should be related to the computer round-off error 
and the matrix condition.’ The performances of these three pressure interpolation polynomials 
are discussed in terms of numerical stability and convergence rate in the following section. 

The assembled global system of equations was solved by a direct (Picard) iteration method 
using a frontal solver, and the solutions were updated using an under-relaxation method given as 

(18) 
where aj  represents any degree of freedom, a is the under-relaxation number, the superscripts n 
and n- 1 denote the iteration levels and a: is the updated solution. No under-relaxation was 
necessary for low-Reynolds-number flows. However, a = 0.8 and a = 1 have been used for velocities 
and pressure respectively to obtain convergent solutions for high-Reynolds-number flows (i.e. 
cavity flow at a Reynolds number of 10000). With use of these under-relaxation parameters, 
divergent and/or convergent to non-physical solutions have not been encountered for all the 
example flows considered herein. 

a; = aaj” + (1 - a)aj” - 1, 

EXAMPLE PROBLEMS 

The finite element methods described in the previous section were tested by solving a lid-driven 
cavity flow,lO. 12.19-21 a laminar backward-facing step flowz2, 23 and a laminar flow through a 
nest of  cylinder^.^^-^^ For cavity flow at a Reynolds number of 10000, sharp boundary layers 
develop along all the boundary edges of the cavity. For the backward-facing step flow, the flow has 
to expand abruptly at the convex corner of the backward-facing step and a strong pressure 
gradient is formed at  the same corner. Owing to these facts, obtaining convergent solutions with 
any iterative numerical method can be quite diffi~ult.’~ Therefore these two flows provide serious 
test cases for any numerical method. To further investigate the convergence nature of the pressure 
interpolation methods for arbitrary distorted quadrilateral elements, a laminar flow through a 
nest of cylinders has also been included in this paper. 

In the following discussion, solving the coupled system of equations once is counted as an 
iteration. The convergence rate versus the number of iterations is discussed based on the error 
criterion ( E )  defined as 

E = max (I 1 - aj”/akaxI), 
j = l , T  

where aj  denotes a nodal value of velocity component or pressure; amax denotes the maximum 
velocity in the flow domain if aj is the velocity degree of freedom, and denotes the maximum 
pressure if a j  is the pressure degree of freedom; and T is the total number of degrees of freedom. 

In non-linear problems the required number of iterations to obtain a convergent solution 
depends on the prescribed convergence criterion. In the penalty method the pressure is recovered 
from the converged velocity solution in the post-process, and the quality of the recovered pressure 
depends on the velocity. In order to track down the convergence history of the pressure, the 
pressure was recovered at the end of each iteration in the present study. The purpose was to 
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provide some insight into the convergence nature of the penalty methods, which would be helpful 
in deciding the convergence criterion for velocity in application situations. For the penalty 
methods a penalty number of (p /p )  x 10" has been used. 

The pressure is discontinuous across element boundaries. Thus the nodal pressure at the 
velocity node has been obtained by averaging all the pressure contributions made by the elements 
containing the node; and each of the contributions was computed using equations (1 5H17), 
respectively. 

For convenience in the following discussion, the velocity-pressure integrated method with the 
pressure interpolation polynomials given as equation (15) is denoted as the VP-INT method, and 
the consistent penalty method with the pressure interpolation polynomials given as equations 
(15)417) is denoted as the PNLT-K, PNLT-E and PNLT-D methods respectively. 

Lid-driven cavity f low 

A lid-driven cavity flow for a Reynolds number of 10000 is considered below. Fine grid finite 
difference computational results for the same flow can be found in References 20 and 21. The 
no-slip boundary condition (u = v =0) has been prescribed at all the boundaries except y =  1. 
where u =  1 and v=O. For the VP-INT method a fixed pressure boundary condition was speci- 
fied at an arbitrary pressure node inside the flow domain. The Reynolds number is defined as 
R , = p U L / p ,  where U =  1 is the velocity of the lid, L= 1 is the reference length, p is the den- 
sity and p is the molecular viscosity of the fluid. The computational domain was discretized b j  
unequally spaced 32 x 32 quadratic elements.* The trivial solution (u = v = p = 0) was used as ar 
initial guess for the Reynolds number of 10000, for all the cases. 

-1 0 -0.5 '0.0 0.5 1 .o 
U 

Figure 2. Horizontal and vertical velocity profiles for cavity flow at Reynolds number of 1oooO: ~ , VP-INT methoc 
, PNLT-K method; --------, PNLT-E method ----, PNLT-D method 
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The horizontal velocity profiles at  x = 0.5 and the vertical velocity profiles at y = 0.5 are 
compared with those of Ghia et and Schreiber and Keller" in Figure 2. It can be seen that the 
four methods yielded almost identical velocity profiles and that the present computational results 
compare more favourably with those of Ghia et aLZ0 than with those of Schreiber and Keller.21 
Comparison of the horizontal velocity profiles obtained by the VP-INT method with those of 
Ghia et d2* and Schreiber and Keller2' for various Reynolds numbers can be found in 
Reference2, where it can be seen that the finite element computational results compared 
favourably with those of the cited references. 

The streamline and normalized pressure contours obtained by using the PNLT-K and PNLT-E 
methods are shown in Figures 3 and 4 respectively. The normalized pressure P was obtained from 
the computed static pressure p using P = pL/U/p. '  The streamline and pressure contour labels are 
given in Table I. The streamline and pressure contours obtained by using the VP-INT and PNLT- 
D methods were almost identical to those shown in Figure 3. The pressure contour obtained by 
using the PNLT-E method exhibited a few distorted pressure contour lines at  the top region of the 
cavity; see Figure 4(b). It was found that the distorted pressure contour lines were caused by the 

Figure 3. Cavity flow for Re= lOoM), PNLT-K method: (a) streamline; (b) pressure 
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Figure 4. Cavity flow for Re= 1oo00, PNLT-E method: (a) streamline; (b) pressure 
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Table I. Contour labels for cavity flow 

(a) Streamline contour 

Label * Label * Label * 
A -0.1 1 F - 0.03 K 2 x 10-4 
B -0.10 G - 0.0 1 L 5 x 10-4 
C - 0.09 H - 1  x 10-10 M 1 x 10-3 
D - 0.07 I 1 x 10-6 N 2 x  1 0 - 3  
E - 0.05 J s 10-5 

(b) Pressure contour 

Label P Label P Label P 
A - 900 D - 200 G 1000 
B - 650 E 0 H 3000 
C - 400 F 400 

pressure matrix M, and the coefficients of the pressure interpolation polynomials. The entries of 
the pressure matrix M, were different by several orders of magnitude, and the coefficients of the 
pressure interpolation polynomials, i.e. the coefficients for (1, x, y), were about ten orders of 
magnitude different for the high-aspect-ratio fine grids located along the boundary of the cavity. 
However, these distorted pressure contour lines may disappear if a different pressure-averaging 
technique is used. An alternative pressure-averaging technique is discussed in the section ‘Flow 
through a nest of cylinders’. 

The error norm versus the number of iterations for each flow variable is shown in Figure 5. It 
can be seen that the VP-INT method yielded a uniformly convergent solution for the relative error 
as small as The PNLT-K and PNLT-D methods exhibited convergence rates comparable 
with that of the VP-INT method. On the other hand, the PNLT-E method exhibited poorer 
convergence behaviour than the other methods. Again, the ill conditioned pressure matrix M, and 
the computer round-off error were responsible for the degenerated convergence rate of the PNLT- 
E method. For all the cases, practically convergent solutions (i.e. E z 1 x were obtained after 
35 iterations. 

In general, the present finite element computational results obtained by using the 32 x 32 
quadratic elements (or equivalently, a 65 x 65 mesh) compared favourably with those of Ghia 
et a1.,20 in which 129 x 129 and 257 x 257 meshes were used, and with those of Schreiber and 
Keller,” in which a 18Ox 180 mesh was used, for the same Reynolds number of 10000. 

BackwardTfacing step ,pow 

A laminar backward-facing step flow is considered below. The experimental data can be found 
in Armaly et a1.” In the following discussion, the Reynolds number Re = p  VD/p  is based on the 
hydraulic diameter ( D  = 0.0104 m) and the bulk velocity (V=0.6667 m s- ’) at the inlet. The 
experimental data show that there exists only one recirculation zone at the downstream region of 
the backward-facing step for a Reynolds number less than approximately 450, and that a second 
recirculation zone appears at the top wall of the channel for Reynolds numbers of approximately 
450 and beyond. A Reynolds number of 500 has been considered in this paper. A complete set of 
computational results obtained by using the velocity-pressure integrated method for Reynolds 
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Figure 5. Error norm versus number of iterations for cavity flow: ~ , VP-INT method; ---, PNLT-K method; 
--___--- , PNLT-E method ---, PNLT-D method 

numbers of 10-900 can be found in Reference 2, and a finite difference computation of the same 
backward-facing step flow can be found in Kim and M ~ i n , ~ ~  among many others. 

The inlet boundary is located at 3 step heights upstream of the step, and the exit boundary at 45 
step heights downstream of the step. The computational domain was discretized by 44 x 15 
quadratic elements (or equivalently, an 89 x 3 1 mesh) in the flow direction and transverse direction 
respectively. The velocity profile of a fully developed channel flow was used as the inlet boundary 
condition. Vanishing normal stress was prescribed at  the exit boundary. For the VP-INT method 
a fixed pressure boundary condition cannot be prescribed together with the vanishing normal 
stress boundary ~ondi t ion.~ '  The trivial solution (u = u = p = 0) was used as an initial guess. 

The streamline and pressure contours obtained by using the PNLT-K and PNLT-E methods 
are shown in Figures 6 and 7 respectively. The pressure has been normalized using P=pL,, , /-  
Kef/p, where Lref = 0.0049 m is the step height and Ker is the bulk velocity at  the inlet. The labels 
for the streamline and pressure contours are given in Table 11. The streamline and pressure 
contours obtained by using the VP-INT and PNLT-D methods were identical to those shown in 
Figure 6. The PNLT-E method yielded the similar distorted pressure contour lines in the 
downstream region of the channel for the same reasons discussed previously; see Figure 7. 

The error norm versus the number of iterations for each flow variable is shown in Figure 8. 
Practically convergent solutions were obtained after approximately 50 iterations for all the cases. 
The VP-INT method yielded a uniformly convergent solution as before. The PNLT-K, PNLT-E 
and PNLT-D methods yielded rapidly convergent solutions as for the VP-INT method at earlier 
iterations. As the number of iterations was increased, the PNLT-E method yielded an oscillatory 
solution for the same reasons discussed in the previous cavity flow example. 
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C D E  F G H  I J K  K J  I H G F 

Xh-38 
(b) 

Figure 6. Backward-facing step flow, PNLT-K method: (a) streamline; (b) pressure 

C D E  F G H  I J K  K J  I H G F 

xJh = 38 

Figure 7. Backward-facing step flow, PNLT-E method: (a) streamline; (b) pressure 

The present computational results compared favourably with the experimental data as well as 
with the fine grid finite difference computational results of Kim and M ~ i n , * ~  in which a 101 x 101 
grid was used. 

Flow through a nest of cylinders 

Flows through a nest of cylinders can be found in a number of engineering applications, such as 
the Space Shuttle main engine-main injector assembly (SSME-MIA) and the heat exchangers in 
nuclear reactors; see Reference 24 for more details. However, these flows began to be solved 
numerically only very recently. The solutions involved a finite element computation of a two- 
dimensional laminar flow through a nest of cylindersz5 and a body-fitted grid finite difference 
computation of a three-dimensional laminar flow through a nest of cylinders.26 Neither 
experimental data nor detailed computational results are available for these flows as yet. 
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Table 11. Contour labels for backward-facing step flow 

(a) Streamline contour 

Label * Label * Label * 
~ ~~ 

A -2.0 x 10-4 F 1.0 x 10-4 K 3.467 x 1O-j 
B - 1.5 x 10- 4 G s.ox 10-4 L 3.480 x lo- '  
C -5.ox 10-5 H 1.0 x 1 0 - 3  M 3.50 ~ 1 0 - 3  
D - 1 . 0 ~  10-5 I 2-0 x 10-3 
E 0 J 3 . o ~  10-3 

(b) Pressure contour 

Label P Label P Label P 
~ ~~ ~~ 

A - 2 5 5  F 10.0 K 28.5 
B - 23.0 G 15.0 L 29.5 
C - 18.0 H 20.0 M 29.8 
D - 8.0 I 25.0 N 300 
E 0.0 J 27.0 

Table 111. Streamline contour labels for flow through a nest of cylinders 

Label * Label * Label $ 

A - 0.04 D 0.4 G 1.0 
B 0.0 E 0.6 
C 0.2 F 0.8 

A laminar flow through a nest of cylinders at a Reynolds number of 40 is considered below; see 
Figure 9. The Reynolds number is defined as Re=pUD/p ,  where U = 1 is the free-stream velocity 
and D = 1 is the diameter of a cylinder. The inlet boundary was located at 3 diameters upstream of 
the forward stagnation point of the first column of cylinders, and the exit boundary at 41 
diameters downstream of the inlet boundary. A uniform velocity profile was used as the inlet 
boundary condition. The vanishing normal stress boundary condition was prescribed at the exit 
boundary, and the symmetry boundary condition at the top and bottom of the computational 
domain. The computational domain was discretized by 1024 quadratic elements with 4369 nodes. 
The finite element mesh in the vicinity of the nest of cylinders is shown in Figure 9. The trivial 
solution (u = v = p = 0) was used as an initial guess. 

The streamline and pressure contours obtained by using the PNLT-K and PNLT-E methods 
are shown in Figures 10 and 11 respectively. The pressure has been normalized using 
P=p/(pU2/2), where U = 1 is the reference velocity at the inlet boundary. An arbitrary reference 
pressure ( p  = 0.0) has been assigned at the forward stagnation point of the first column of cylinders. 
The streamline contour labels are given in Table 111. In Figures 10 and 11 the minimum and 
maximum normalized pressures P are - 20-0 and 0.0 respectively; and the incremental normalized 
pressure A P  between the contour lines is 1.0. The streamline and pressure contours obtained by 
using the VP-INT and PNLT-D methods were identical to those shown in Figure 10. The PNLT- 
E method yielded severely distorted pressure contour lines for the same reasons listed previously; 
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Figure 8. Error norm versus number of iterations for hackward-facing step flow: - , VP-INT method; ---, 
PNLT-K method; --------, PNLT-E method; ---, PNLT-D method 

Figure 9. Flow through a nest of cylinders; grid in the vicinity of the nest of cylinders 

see Figure 11. An alternative pressure-averaging technique would be to compute the pressure at 
the centre (i.e. 5 = q =0) of the quadrilateral element and to use an area-weighted average to obtain 
the nodal pressure. However, this alternative pressure-averaging technique has not been pursued 
in the present study for the following two reasons. Firstly, this technique is inconsistent with the 
present pressure interpolation methods which assume a planar variation of the pressure inside 
each element. Secondly, all the methods, except the PNLT-E method, yielded clean, smooth 
pressure contours. 
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(b) 

Figure 10. Flow through a nest of cylinders, PNLT-K method (a) streamline; (b) pressure 

Figure 11. Flow through a nest of cylinders, PNLT-E method: (a) streamline; (b) pressure 

The error norm versus the number of iterations for each flow variable is shown in Figure 12. 
Practically convergent solutions were obtained after approximately 15 iterations for all the cases. 
The VP-INT method yielded a uniformly convergent solution as before. The PNLT-K, PNLT-E 
and PNLT-D methods yielded rapidly convergent solutions as the VP-INT method at  earlier 
iterations. For the arbitrary distorted quadrilateral elements with high aspect ratio, the adverse 
effect of the ill conditioned pressure matrix and the computer round-off error became so severe 
that only the VP-INT method yielded uniformly convergent pressure as the number of iterations 
was increased. 

CONCLUSIONS AND DISCUSSION 

A comparative study of the velocity-pressure integrated and penalty finite element methods has 
been provided. It has been shown that both the velocity-pressure integrated method and the 
consistent penalty method yielded accurate computational results for high-Reynolds-number 
flows. The two finite element methods exhibited almost identical convergence rates for the 
example problems considered. The penalty method with the pressure interpolation polynomials 
given in equations (15) and (17) was found to be numerically more stable and yielded a more 
uniformly convergent solution than that with the pressure interpolation polynomials given in 
equation (1 6). 
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Figure 12. Error norm versus number of iterations for flow through a nest of cylinders: __ , VP-INT method; ---, 
PNLT-K method; --------, PNLT-E method; ----, PNLT-D method 

The velocity-pressure integrated and penalty methods yielded almost identical computational 
results. If the pressure is not the primary concern in application situations, then the penalty 
method may be more advantageous over the velocity-pressure integrated method since a slight 
improvement in computational efficiency can be achieved by excluding the conservation of mass 
equation from the system of equations. For internal flows, for which pressure may be the most 
important design parameter in many applications, the velocity-pressure integrated method would 
be preferable to the penalty method because of its uniform convergence behaviour for pressure, 
especially when arbitrary distorted quadrilateral elements have to be used. 

For the example problems considered herein, a relatively small number of grid points, 
compared with the fine grid finite difference computations of the same example flows, was required 
to resolve the details of the flow field and to suppress the numerical wiggles without the use of any 
upwinding technique. The present computational results compared favourably with available 
experimental data and/or fine grid finite difference computational results. 
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